Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

نویسندگان

  • Wen-Juan Pan
  • Xia Wang
  • Yong-Ren Deng
  • Jia-Hang Li
  • Wei Chen
  • John Y. Chiang
  • Jian-Bo Yang
  • Lei Zheng
چکیده

The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R(2), 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nondestructive Determination of the Total Volatile Basic Nitrogen (TVB-N) Content Using hyperspectral Imaging in Japanese Threadfin Bream (Nemipterusjaponicus) Fillet

Background and Objectives: Considering the importance of safety evaluation of fish and seafood from capture to purchase, rapid and nondestructive methods are in urgent need for seafood industry. This study aimed to assess the application of hyperspectral imaging (HSI: 430-1010 nm) for prediction of total volatile basic nitrogen (TVB-N) in Japanese-threadfin bream (Nemipterusjaponicus) fillets, ...

متن کامل

Endogenous Rhythms in Photosynthesis, Sucrose Phosphate Synthase Activity, and Stomatal Resistance in Leaves of Soybean (Glycine max [L.] Merr.).

Experiments were conducted with soybean (Glycine max [L.] Merr. cv ;Ransom') plants to determine if diurnal rhythms in net carbon dioxide exchange rate (CER), stomatal resistance, and sucrose-phosphate synthase (SPS) activity persisted in constant environmental conditions (constant light, LL; constant dark DD) and to assess the importance of these rhythms to the production of nonstructural carb...

متن کامل

Detection of soybean rust using a multispectral image sensor

Soybean rust, caused by Phakopsora pachyrhizi, is one of the most destructive diseases for soybean production. It often causes significant yield loss and may rapidly spread from field to field through airborne urediniospores. In order to implement timely fungicide treatments for the most effective control of the disease, it is essential to detect the infection and severity of soybean rust. This...

متن کامل

Physiological Performance of Soybean Cultivars Under Salinity Stress

  Abstract Two experiments with factorial arrangements on the basis of randomized complete block design in three replications were conducted in 2007 and 2008, to evaluate chlorophyll content index (CCI), fluorescence of chlorophyll, proline content and grain yield of three soybean cultivars (Williams, Zan and L17) under a non-saline (control) and three saline (3, 6 and 9 ds/m NaCl) conditions...

متن کامل

Nonspectroscopic imaging for quantitative chlorophyll sensing.

Nondestructive imaging of physiological changes in plants has been intensively used as an invaluable tool for visualizing heterogeneous responses to various types of abiotic and biotic stress. However, conventional approaches often have intrinsic limitations for quantitative analyses, requiring bulky and expensive optical instruments for capturing full spectral information. We report a spectrom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015